(1/x^2-81)-(3/x-9)=(1/x+9)

Simple and best practice solution for (1/x^2-81)-(3/x-9)=(1/x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/x^2-81)-(3/x-9)=(1/x+9) equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

1/(x^2)-(3/x)-81+9 = 1/x+9 // - 1/x+9

1/(x^2)-(3/x)-(1/x)-81-9+9 = 0

1/(x^2)-3*x^-1-x^-1-81-9+9 = 0

x^-2-4*x^-1-81 = 0

t_1 = x^-1

1*t_1^2-4*t_1^1-81 = 0

t_1^2-4*t_1-81 = 0

DELTA = (-4)^2-(-81*1*4)

DELTA = 340

DELTA > 0

t_1 = (340^(1/2)+4)/(1*2) or t_1 = (4-340^(1/2))/(1*2)

t_1 = (2*85^(1/2)+4)/2 or t_1 = (4-2*85^(1/2))/2

t_1 = (4-2*85^(1/2))/2

x^-1-((4-2*85^(1/2))/2) = 0

1*x^-1 = (4-2*85^(1/2))/2 // : 1

x^-1 = (4-2*85^(1/2))/2

-1 < 0

1/(x^1) = (4-2*85^(1/2))/2 // * x^1

1 = ((4-2*85^(1/2))/2)*x^1 // : (4-2*85^(1/2))/2

2*(4-2*85^(1/2))^-1 = x^1

x = 2*(4-2*85^(1/2))^-1

t_1 = (2*85^(1/2)+4)/2

x^-1-((2*85^(1/2)+4)/2) = 0

1*x^-1 = (2*85^(1/2)+4)/2 // : 1

x^-1 = (2*85^(1/2)+4)/2

-1 < 0

1/(x^1) = (2*85^(1/2)+4)/2 // * x^1

1 = ((2*85^(1/2)+4)/2)*x^1 // : (2*85^(1/2)+4)/2

2*(2*85^(1/2)+4)^-1 = x^1

x = 2*(2*85^(1/2)+4)^-1

x in { 2*(4-2*85^(1/2))^-1, 2*(2*85^(1/2)+4)^-1 }

See similar equations:

| 1/2(x+3)=x-3 | | 8x+2+x=1+5x-15 | | 4(d-6)+7= | | 2(x+2)-(x+2)=3x-2 | | 2(x+2)-(x+2)=3x-1 | | q/20=10 | | 2(x+2)-(x+2)=x-1 | | (-5x-1)(2x^2)(x)= | | (2y+9)(y+7)=0 | | 9y^2-15y+6y^3=0 | | 13=3x+7 | | W=ZH-5ZT^2 | | m^4-m^2-2=0 | | 3m-4+6m= | | a+20=55 | | 22-4/3x=2 | | -12x-5y=-1 | | 6a^2b^2+30ab^2= | | 6x-y=-30 | | 2+1/3a=11 | | 6w^2-7w-5=0 | | 8x-2.0=-16 | | 8-5x=17+4x | | x-7.3=-4.7 | | -11x^2+1210x-26400=0 | | p=2(80)+2(103) | | 3-(-7)=4 | | 2n+zr=r-5h | | y+26=19 | | -30/10 | | 3x^3+27x^2+54x= | | 9y-16y=-31-39 |

Equations solver categories